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Abstract

A Fourier±Chebyshev collocation spectral method is used to simulate the three dimensional unsteady ¯ow inside a cylindrical

annular enclosure comprised of two counter-rotating disks and sidewalls. Each disk is taken to be isothermal, with an imposed

temperature di�erence between them, and the sidewalls are adiabatic. Buoyancy forces are neglected. A shallow annulus with aspect

ratio, h=ro � 0:06, and radius ratio, ri=ro � 0:13, is considered (where 2h is the distance between the disks and ri and ro are the inner

and outer disk radii, respectively). One disk is rotating at the maximum speed and the other disk is rotating in the opposite direction.

Results are obtained over a range of Re including the transition from laminar ¯ow, for cases with both disks rotating at the same

speed, C�ÿ1.0, with one disk rotating more slowly than the other, C�ÿ0.4, and with one stationary disk, C� 0 (where C is the

disk angular velocity ratio). The heat transfer rates between the disks are also obtained, showing the e�ects of transition to tur-

bulence. The three-dimensional nature of the ¯ows is characterized, and mean and RMS turbulence quantities are presented.

Ó 1999 Elsevier Science Inc. All rights reserved.
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1. Introduction

Numerous engineering applications involve rotating disks,
either singly or as facing disks or disk stacks. The applications
include certain semiconductor manufacturing processes with
rotating wafers, magnetic storage devices (disk drives), gas
turbine engines, and other rotating machinery. Consequently,
the ¯uid dynamics (and to a lesser extent the heat transfer)
have been investigated for various geometries and ranges of
conditions.

For the ¯ow above a single spinning disk, von Karman
(1921) recognized that a similarity solution of the Navier
Stokes equations can be obtained provided that the disk is of
in®nite extent. Batchelor (1951) and Stewartson (1953) ex-
tended the similarity solutions to facing pairs of in®nite ro-
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Notation

2h disk spacing
Nu Nusselt number
p dimensional pressure
P dimensionless pressure
Pe Peclet number
Pr Prandtl number
r; z dimensional radial and axial coordinates, respectively
R; Z dimensionless radial and axial coordinates, respec-

tively
Re Reynolds number
t time
T temperature
v dimensional velocity
V dimensionless velocity
a thermal di�usivity
C disk angular velocity ratio, x2/x1

d axial clearance between disk shrouds
h azimuthal coordinate
H dimensionless temperature
m kinematic viscosity
q density
s dimensionless time
w streamfunction
x angular velocity

Subscripts
1, 2 bottom and top disks, respectively
C, H cold and hot, respectively
i, o inner and outer, respectively
r radial
h azimuthal
z axial
T temperature
RMS root mean square

Superscripts
n time discretization level
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tating disks, but they di�ered on the predicted ¯ow structure.
Linear stability theory combined with the von Karman simi-
larity transformation has been employed to assess instabilities
and the presence of multiple solutions for both single and pairs
of in®nite disks (Holodniok et al., 1977; Holodniok et al.,
1981; Anaturk and Szeri, 1992). Numerous single disk exper-
iments have demonstrated the existence of three ¯ow regimes
near the disk surface: a laminar ¯ow regime near the disk axis,
a region of Ekman spirals at radial locations beyond a critical
Re, and a turbulent ¯ow region at radial locations beyond a
higher critical Re (Chin and Litt, 1972; Wahal et al., 1993;
Kobayashi, 1994). Szeri et al. (1983a, b) and Szeri and Adams
(1978) assessed the e�ect of the in®nite disk assumption and
through¯ow on ®nite open disk ¯ow and stability character-
istics, combining experiments with B-spline approximation
Galerkin predictions. Several other works considering ¯ow
between rotating disks with or without through¯ow have been
reported (Lai et al., 1984; Elena and Schiestel, 1995; Nesred-
dine et al., 1995; Iacovides and Chew, 1993).

The ¯ow between corotating disks has also been exten-
sively studied. A summary of experimental and numerical
observations available at the time is provided in Humphrey et
al. (1991) and Abrahamson et al. (1991). Chang et al.
(1989, 1990) reported two dimensional simulations of ¯ow
and heat transfer using a turbulence model, and obtained
reasonable agreement with turbulent experimental data.
Schuler et al. (1990), Humphrey et al. (1995), and Iglesias and
Humphrey (1998) presented results of a combined experi-
mental and numerical program to investigate the onset of
instabilities and three dimensional laminar ¯ow between co-
rotating disks in a cylindrical enclosure. Their numerical re-
sults include both axisymmetric and three dimensional
calculations, and provide insights to the three dimensional
e�ects believed to be related to the appearance of foci of axial
vorticity and the source of discrete frequencies found exper-
imentally. However, they noted the disparity between exper-
iment and simulation regarding the onset of instability and
assume it to be due to the numerical di�usion in their control
volume approach as well as the possibility of inadequate
resolution in the three-dimensional model. Radel and Szeri
(1997) used the geometry of Schuler et al. (1990) to perform
three-dimensional steady state analyses using a B-spline nu-
merical scheme and a very coarse grid resolution. They re-
ported ®nding solutions that are axisymmetric but
asymmetric about the axial midplane, in contradiction to the
three-dimensional numerical results of Humphrey et al. (1995)

and Iglesias and Humphrey (1998) over the same range of
conditions.

Fewer studies have focused on the ¯ow between counter-
rotating disks. Gan et al. (1994) and Kilic et al. (1994) con-
sidered the ¯ow between counter-rotating disks in an annular
enclosure, for several di�erent values of the disk angular ve-
locity ratio, C. They used a ®nite volume numerical approach
combined with a turbulence model in an attempt to match their
experimental data. The limiting case where one disk is held
stationary, C� 0, was also studied by Randriamampianina
et al. (1997), who used a two-dimensional spectral method at
low Re (for ¯ows believed to be laminar) and a ®nite-volume
method employing a Reynolds stress transport model for
the turbulent regime calculations at higher Re.

The numerical approach employed in the references above
either used idealized geometric and/or similarity assumptions,
low order spatial approximations, turbulence models, steady
state assumptions, or combinations of these. Although at least
two very recent studies using an axisymmetric application of
spectral methods have considered transitional ¯ow in a rotat-
ing disk system (Randriamampianina et al., 1997; Hill and
Ball, 1997), it is believed that no previous three-dimensional
studies have been undertaken to examine the ¯ow and heat
transfer (particularly the unsteady behavior and transition to
chaos and turbulence) in a rotating disk geometry using a
global spectral method approach. The work reported here was
preceded by an axisymmetric study of the same counter-ro-
tating disk problem (Hill and Ball, 1997). Additional details of
the spectral simulations are also provided by Hill (1998).

2. Numerical approach

2.1. Model formulation

The coupled equations describing the time-dependent con-
servation of mass, momentum, and thermal energy for an in-
compressible ¯uid are solved subject to the imposed boundary
conditions. The system of interest, shown in Fig. 1, is an an-
nular region formed by two disks separated by a spacing of 2h,
with cylindrical shrouds attached to each disk at the inner and
outer disk radii. (Since buoyancy forces are neglected, the
orientation of the axis of rotation is arbitrary; for clarity in
discussion disk (1) will be referred to as the bottom disk and
disk (2) will be referred to as the top disk.) A small axial
clearance, d, separates the shrouds at the axial midplane

Fig. 1. Schematic of coordinate and physical system.
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allowing each disk/shroud set to rotate freely from the other.
The axial and radial velocities are assumed to be zero across
the shroud clearance, thereby creating an enclosed system.
This assumption is consistent with Kilic et al. (1994), who
could control and thus eliminate net mass e�ux through the
axial clearance in their experimental apparatus. The azimuthal
velocity is arbitrarily assumed to vary linearly between the
shrouds; other pro®les were used and the solutions were not
found to be sensitive to the azimuthal velocity boundary
condition across the relatively small shroud clearance. The
bottom disk is held at the minimum system temperature and
rotated at the maximum speed, and the top disk is held at the
maximum system temperature and rotated in the direction
opposite to that of the lower disk. For simplicity, the inner and
outer shrouds and their separating clearance gaps are assumed
to represent adiabatic boundaries. It is emphasized that the
presence of the axial clearance between the shrouds and
the boundary conditions imposed there are not necessitated by
the numerical procedure employed in this study, but rather are
included to match the geometry considered by Kilic et al.
(1994).

The time-dependent three-dimensional momentum and
thermal energy conservation equations are considered in a
polar±cylindrical coordinate system assuming constant prop-
erties. The non-linear advective terms in the momentum
equation are treated either in non-conservative form or in
skew-symmetric form. Although for a collocation method the
non-conservative form does not conserve kinetic energy and is
therefore unstable over ``long'' time integrations, it requires
the computation of fewer derivatives and thus less computer
time than the skew-symmetric form. Since the two approaches
provide equivalent statistical and average results (before the
non-conservative computations become numerically unstable),
the non-conservative form can be used for cases up to mildly
chaotic ¯ow. Above the mildly chaotic regime, the skew-sym-
metric form is used to ensure numerical stability over the time
integration. The skew symmetric form is chosen over the more
commonly used (and less computationally intensive) rotational
form since the skew symmetric form has been found to con-
verge faster to a grid independent solution (Zang, 1991). The
form of the advective terms in the energy equation has been
found to have no appreciable e�ect on the stability of the
calculations and is thus left in the non-conservative form.

The following de®nitions are employed to simplify the non-
dimensional form of the conservation equations.

C1 � ro � ri

ro ÿ ri

� �
�1a�

C2 � ri ÿ ro

2

� �
�1b�

C3 � ÿC2=h �1c�

R � C1 � r
C2

�1d�

Z � ÿz=h �1e�

s � x1t �1f�

r � o
oR

�
� 1

Rÿ C1

�
er � C3

o
oZ

� �
ez � 1

Rÿ C1

o
oh

� �
eh �1g�

r2 � o2

oR2
� 1

Rÿ C1

o
oR
� C2

3

o2

oZ2
� 1

Rÿ C1� �2
o2

oh2
: �1h�

Using these de®nitions, the non-periodic coordinate direc-
tions, r and z, are mapped to the interval [ÿ1, 1] in R and Z,
for convenience in applying the Chebyshev polynomial ex-

pansions to be discussed later. The dependent variables are
non-dimensionalized by introducing length, time, and tem-
perature scales based on the outer radius of the disks, the faster
disk angular velocity, and the imposed temperature di�erence
between the two disks. These scales are also used to de®ne the
remaining dimensionless parameters.

Vr � vr

x1C2

�2a�

Vh � vh

x1C2

�2b�

Vz � vz

x1C2

�2c�

H � T ÿ TC

TH ÿ TC
�2d�

P � Re
C2

ro

� �2 p

q x1C2� �2 �2e�

Re � x1r2
o

m
�2f�

Pr � t
a

�2g�

Pe � RePr : �2h�
The imposed temperature di�erence is assumed to be small

enough so that corresponding changes in density are negligible,
and buoyancy forces due to gravity or rotation are likewise
negligible.

An Adams Bashforth/second order backward Euler (AB/
2BE) time discretization is applied to the conservation equa-
tions, giving an implicit treatment of the di�usion terms and an
explicit treatment of the advection terms that is second order
accurate in time (Ehrenstein and Peyret, 1989). Upon per-
forming the non-dimensionalization and the time discretiza-
tion, the semi-discrete conservation equations (neglecting
buoyancy) become:

Continuity:

r � Vn�1 � 0: �3�
R-momentum:

r2

"
ÿ 1

Rÿ C1� �2 ÿRe
C2

ro

� �2
3

2Ds

#
V n�1

r ÿ 2

Rÿ C1� �2
oV n�1

h

oh

� oP n�1

oR
� Sn;nÿ1

r : �4�
h-momentum:

r2

"
ÿ 1

Rÿ C1� �2 ÿRe
C2

ro

� �2
3

2Ds

#
V n�1

h � 2

Rÿ C1� �2
oVr

oh

� 1

Rÿ C1� �
oP n�1

oh
� Sn;nÿ1

h : �5�

Z-momentum:

r2

"
ÿRe

C2

ro

� �2
3

2Ds

#
V n�1

z � C3

oP n�1

oZ
� Sn;nÿ1

z : �6�

Thermal energy:

r2

"
ÿ Pe

C2

ro

� �2
3

2Ds

#
Hn�1 � Sn;nÿ1

T : �7�

The source terms, S, in Eqs. (4)±(7) include the explicit
parts (the previous two time steps) of the non-linear advective
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terms and the temporal terms (discretized in time) as follows
(where x represents r, h, and z for the radial, azimuthal, and
axial directions, respectively).

Sn;nÿ1
x � Re

C2

ro

� �2

r � VV�
h

� V � rV�nx ÿ 0:5 r � VV�

� V � rV�nÿ1
x

i
ÿRe

C2

ro

� �2
4V n

x ÿ V nÿ1
x

2Ds

� �
�8a�

Sn;nÿ1
T � Pe

C2

ro

� �2

2 V � rH� �n
h

ÿ V � rH� �nÿ1
i

ÿ Pe
C2

ro

� �2
4Hn ÿHnÿ1

2Ds

� �
: �8b�

The pressure Poisson equation is generated by taking the
divergence of the momentum equations, and since the diver-
gence of the velocity is zero for incompressible ¯ows, the fol-
lowing equation is obtained:

r2P n�1 � ÿr � Sn;nÿ1: �9�
Eqs. (4) and (5) can not be directly solved for the Vr and Vh

velocity components since they appear implicitly in both
equations. To decouple the equations, a transformation is in-
troduced for the r and h velocity components and directional
unit vectors, following Patera and Orszag (1982). Further de-
tails can be found in Hill (1998).

The equations are solved subject to the boundary condi-
tions that were discussed above for the system of interest (see
Fig. 1). In dimensionless form, they are:

Z � 1:

Vr � Vz � H � 0; Vh � Rÿ C1: �10a�
Z � ÿ1:

Vr � Vz � 0; H � 1; Vh � C�Rÿ C1�: �10b�
R � 1 and Z > d=2h:

Vr � Vz � oH=oR � 0; Vh � 1ÿ C1: �10c�
R � 1 and Z < ÿd=2h:

Vr � Vz � oH=oR � 0; Vh � C�1ÿ C1�: �10d�
R � ÿ1 and Z > d=2h:

Vr � Vz � oH=oR � 0; Vh � ÿ�1� C1�: �10e�
R � ÿ1 and Z < ÿd=2h:

Vr � Vz � oH=oR � 0; Vh � ÿC�1� C1�: �10f�
R � 1;ÿ1 and jZj < d=2h:

Vr � Vz � oH=oR � 0; Vh varies linearly: �10g�
No natural pressure boundary conditions exist to solve

Eq. (9). Additionally, a method must be implemented to sat-
isfy the incompressibility constraint of Eq. (3). Both problems
are addressed using an in¯uence matrix technique, which is
described later. The in¯uence matrix technique provides a di-
rect non-iterative method to determine the pressure ®eld that
ensures that the incompressibility constraint is satis®ed at ev-
ery interior point and on the boundary.

To solve the conservation equations at each time step, a
Fourier±Chebyshev collocation spectral method is used with
no dealiasing (Canuto et al., 1988). Relative to a pseudospec-
tral method, the collocation method provides a simpler ap-
proach to specifying the boundary conditions, a slight

improvement in convergence characteristics, and the elimina-
tion of the need to transfer back and forth between physical
and wavenumber space for the non-periodic directions. The
physical variables to be determined (velocities, pressure, and
temperature) are represented by truncated series expansions of
Chebyshev polynomials on a Gauss±Lobatto grid in both the
radial and axial directions and by Fourier series on an evenly
spaced grid in the periodic azimuthal direction. The form of
the expansion for a generic variable, /, is then:

/�R; Z; h; s� �
XLÿ1

l�0

XMÿ1

m�0

XK=2ÿ1

kh�ÿK=2

/̂lmkh
�s�Tl�R�Tm�Z�exp�ikhh�

�
XK=2ÿ1

kh�ÿK=2

~/kh
�R; Z; s� exp�ikhh� �11�

Fig. 2. Mean velocity pro®les for Re� 105 and C�ÿ0.4; symbols

denote experimental data of Kilic et al. (1994); (a) Vr at r=ro � 0:85,

(b) Vh at r=ro � 0:85.
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where i is the imaginary unit; L, M, and K are the number of
grid points in the radial, axial, and azimuthal directions, re-
spectively; /̂lmkh

is the corresponding time-dependent Fourier±
Chebyshev coe�cient (to be determined); and Tl, Tm are the
Chebyshev polynomials. This discretization approach enables
one to generate ®rst and second order spatial derivative op-
erator matrices for the conservation equations in the r- and
z-directions. Derivatives of the dependent variables in the
non-periodic directions are thus evaluated by matrix products
(Hill, 1998; Canuto et al., 1988; Ku et al., 1987).

Since the quantities of interest are expanded in Fourier
series in the azimuthal direction, the simplest approach is to
solve for the Fourier expansion coe�cients. Upon performing
the Fourier transform, the terms involving azimuthal deriva-
tives can be represented by products of the Fourier coe�cients
and the corresponding Fourier wave numbers, which reduces
the three-dimensional equations in physical space to a set of
two-dimensional Helmholtz equations for each Fourier wave
number.

The general form of the resulting set of discretized Helm-
holtz equations is as follows (where k is zero for the pressure
Poisson equation).

LRÛ� ÛLZ ÿ kÛ � Ŝ
�
; �12�

where Ŝ
�

is the original right-hand side source term modi®ed to
include the known quantities (boundary conditions) from the

Fig. 5. Mean contours of ¯ow variables in the r±z plane for C�ÿ0.4

and Re� 4400, with maximum values given in parentheses; (a)

Vh�ÿ0:920; 2:299�, (b) Vr�ÿ0:278; 0:310�, (c) Vz�ÿ0:099; 0:198�, (d) T,

(e) w.

Fig. 3. Mean contours of ¯ow variables in the r±z plane for C�ÿ1.0

and Re� 1730, with maximum values given in parentheses; (a)

Vh��2:299�, (b) Vr�ÿ0:231; 0:174�, (c) Vz��0:072�, (d) T, (e) w.

Fig. 4. RMS velocity and temperature ¯uctuations in the r±z plane for

C�ÿ1.0 and Re� 1730, with maximum values given in parentheses;

(a) Vh; RMS�0:554�, (b) Vr; RMS�0:221�, (c) Vz; RMS�0:113�, (d) TRMS�0:101�.

Table 1

Critical Re for onset of unsteady three-dimensional ¯ow

C Rec

ÿ1.0 1700

ÿ0.4 4400

0.0 27 000
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left-hand side. Thus, a total of 5 � K equations are generated
(corresponding to the Fourier transforms of the three velocity
components, pressure, and temperature for each of the K
Fourier wavenumbers, kh). These equations are solved e�-
ciently using matrix diagonalization techniques (Hill, 1998;
Haidvogel and Zang, 1979; Yang and Shizgal, 1994).

To address the issue of the velocity±pressure coupling
present in incompressible ¯ows, an in¯uence matrix technique
is adopted. This approach is generally credited to Kleiser and
Schumann (1980), who used it in a pseudospectral simulation
of channel ¯ow with one non-periodic direction. The method
for one non-periodic direction is well summarized in Canuto
et al. (1988). In a continuous representation of the Navier±
Stokes equations, the in¯uence matrix technique determines
the pressures that ensure a divergence free condition through-
out the solution domain by forcing the divergence of the
velocity on the boundaries to be zero.

For the discretized problem, additional corrections
throughout the domain are needed to force the divergence to
machine precision zero due to the fact that the momentum
equations are not satis®ed on the boundary. The technique
including the correction for the boundary momentum residuals
for two non-periodic directions is described in detail by
Tuckerman (1989) for Cartesian and cylindrical geometries
using a pseudospectral method and by Madabhushi et al.
(1993) for a Cartesian collocation implementation. Here and in
Hill and Ball (1997) the correction is extended to a cylindrical
collocation implementation.

The in¯uence matrix technique without the boundary mo-
mentum correction has been used successfully by others
(LeQu�er�e and P�echeux, 1989; Kuo and Ball, 1997; Ahmed and
Ball, 1997); the motivation for not implementing the correction
is primarily a factor of four savings in the memory required to
store the in¯uence matrix. However, early on in the study of
¯ow in the counter-rotating disk system, it was determined
that unbounded solutions became a severe problem under
chaotic ¯ow conditions unless the correction for the boundary
momentum residuals was applied. A detailed summary of the
in¯uence matrix technique as used here in the study of tran-
sitional ¯ows in cylindrical geometries is provided in Hill
(1998).

2.2. Parallel implementation

Performing three-dimensional simulations of ¯uid ¯ow and
heat transfer requires considerable computer resources, both
processing time and memory. The large memory requirement
is a particular problem when using the in¯uence matrix ap-
proach. To enable the numerical exploration of three-dimen-
sional transitional ¯ows, an e�cient parallel implementation is
desired to increase the wall clock time in which results can be
obtained and discoveries made. The Fourier±Chebyshev
spectral method described above has been parallelized for both
shared memory and distributed memory platforms to perform
the three-dimensional computations of transitional ¯ow in
cylindrical geometries. The approach to parallelizing the
computations, as well as scaling and performance benchmarks,
are described in detail in Hill (1998) and Hill and Ball (1999).

Brie¯y summarized, the approach to parallelizing the
computations is based upon the factoring of the three-dimen-
sional problem into a set of two-dimensional problems for
each Fourier wavenumber, kh, described above. The resulting
two-dimensional problems are then distributed among the
available processing elements (PEs). The Cray proprietary
SHMEM (logically shared memory) routines were used to
perform the message passing required for the transient simu-
lations. The results presented in this study were obtained using
the Cray T3E-600 with 48 PEs at the University of Texas at

Austin and the 512 PE Cray T3E at the Pittsburgh Super-
computing Center. Nearly linear scaling was achieved for
computations using up to 128 PEs, with a small drop-o� in
performance beyond 128 PEs.

Fig. 7. Mean contours of ¯ow variables in the r±z plane for C� 0 and

Re� 27000, with maximum values given in parentheses; (a) Vh�2:299�,
(b) Vr�ÿ0:246; 0:269�, (c) Vz�ÿ0:049; 0:143�, (d) T, (e) w.

Fig. 6. RMS velocity and temperature ¯uctuations in the r±z plane for

C�ÿ0.4 and Re� 4400, with maximum values given in parentheses;

(a) Vh; RMS�0:090�, (b) Vr; RMS�0:054�, (c) Vz; RMS�0:028�, (d) TRMS�0:055�.
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2.3. Solution procedure

At each time step, the solution proceeds by ®rst solving for
the temperature ®eld. Assuming boundary pressures of zero, a
pressure ®eld and accompanying Vr and Vz are calculated. Then
employing the pre-determined in¯uence matrix, the corrections
to the boundary pressures are determined that will ensure a
divergence-free velocity ®eld. Using these boundary pressures,
an implicitly determined pressure ®eld, and ®nally the new Vr,
Vz, and Vh values, are calculated at the new time step.

A typical approach to generating three-dimensional results
is ®rst to perform a two-dimensional simulation, assuming the
¯ow and temperature ®eld to be axisymmetric. Then this so-
lution is wrapped around to each azimuthal plane as a starting
condition for the three-dimensional computations. This solu-
tion is then randomly perturbed in the ®rst time step to induce
a small three-dimensional disturbance on top of the base ¯ow.
The perturbation is typically in the form of a �0.1±1.0% dis-
turbance applied to the velocity component source terms.
Without this disturbance, the solution would remain axisym-
metric due to the perfect separation of the Fourier modes.

It should be noted that the Re used to obtain the two-di-
mensional initial condition may or may not correspond to the
Re for the three-dimensional simulation. If at the Re of interest
the ¯ow is actually axisymmetric, the disturbance will die out
and azimuthal derivatives will tend to zero. However, if the
¯ow is three-dimensional, the ¯ow will evolve from the slightly
disturbed axisymmetric state to the preferred three-dimen-
sional state corresponding to that Re. Once a solution is
available in which three-dimensional characteristics are pres-

Fig. 9. (a) Instantaneous secondary ¯ow streamlines in the r±z plane for C �ÿ1.0 and Re� 4500, at eight equally spaced azimuthal loca-

tions (Dh� p/4). (b) Instantaneous temperature contours in the r±z plane for C�ÿ1.0 and Re� 4500, at eight equally spaced azimuthal

locations (Dh�p/4).

Fig. 8. Rms velocity and temperature ¯uctuations in the r±z plane for

C� 0 and Re� 27000, with maximum values given in parentheses; (a)

Vh; RMS�0:121�, (b) Vr; RMS�0:030�, (c) Vz; RMS�0:035�, (d) TRMS�0:066�.
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ent, that solution may be used as initial conditions for solu-
tions at other Re and/or other grid resolutions (following
proper interpolation of the Fourier and Chebyshev expansion
coe�cients onto the new grid).

To generate the results reported here, di�erent grid reso-
lutions were employed depending upon the speci®c case. For
C�ÿ1.0, the grid resolutions �r; z; h� were 73 ´ 31 ´ 128 for
Re� 1730 and 73 ´ 31 ´ 512 for Re� 4500. For C�ÿ0.4, the
grid resolutions were 73 ´ 31 ´ 64 for Re� 4400 and
73 ´ 31 ´ 384 for Re� 12000. For C� 0.0, the grid resolutions
were 73 ´ 31 ´ 128 for Re� 27000 and 97 ´ 41 ´ 256 for
Re� 70000. For the lower Re cases considered, the grid res-
olutions were deemed to be adequate when the numerically
determined critical values of Re became insensitive to further
increases in grid resolution, allowing Rec to be determined to
within 3±5% as discussed later. For the higher Re cases con-
sidered, the grid resolutions were deemed to be adequate when
no qualitative changes in the ¯ow behavior were observed, and
quantitative changes (in the mean statistics) were small. It is
noted that when smaller grids were employed, problems were
encountered in solving the energy equation; namely, local
temperature values within the computational domain that ex-
ceeded the range of the boundary conditions were encountered
due to insu�cient resolution.

3. Results

3.1. Isothermal ¯ow for C�ÿ0.4, Re� 105

To provide a benchmark for the numerical approach used
in this study, results are presented for the isothermal ¯ow for
C�ÿ0.4 and Re� 105 and are compared with experimental

data taken from the literature (Kilic et al., 1994). In Fig. 2, the
time and azimuthally averaged axial variation of Vr and Vh are
shown at r=ro � 0:85. Each pro®le is normalized by �Rÿ C1�,
which is the local Vh for disk (1), and the faster bottom disk is
on the left. As noted by Hill and Ball (1997), the mean velocity
pro®les between the two disks using two-dimensional (axi-
symmetric) simulations do not agree well with the experi-
mental data from Kilic et al. (1994) for this case; thus, it is
deemed to be an important benchmark for the three-dimen-
sional simulation.

An important feature of this ¯ow is the presence of a
stagnation point along the upper disk, where the centrifugally
driven (radially outward) ¯ow along the bottom disk turns
upward at the sidewall, then ¯ows radially inward along the
upper disk, and meets the centrifugally driven (radially out-
ward) ¯ow along the more slowly rotating upper disk. The
mean location of the stagnation point can be detected by a
change in sign in the mean radial velocity component near the
upper disk.

In Fig. 2(a), the mean Vr is negative near the upper disk,
indicating that the ¯ow there is radially inward. The mean
radial velocity pro®le at r=ro � 0:8 (not shown) is positive near
the upper disk, indicating that the ¯ow is radially outward at
that location. Thus, the stagnation point occurs (in the mean)
between 0:8 < r=ro < 0:85, which is consistent with the ex-
perimental results of Kilic et al. (1994). In addition to properly
bracketing the location of the mean stagnation point, the
magnitude of Vr in the Ekman layers on each disk is shown to
be very well predicted.

Fig. 2(b) shows axial pro®les of the mean Vh at r=ro � 0:85,
accompanied by the experimental data from Kilic et al. (1994).
The numerical results match the experimental data much
better than in the case of the two-dimensional simulations (Hill
and Ball, 1997). The rotation of the core region is well repre-
sented, both in magnitude and trend. In assessing the agree-
ment with the experimental data, it is noted that while Kilic
et al. (1994) provide some indication of the uncertainties for
various system inputs to their experiments (such as probe point

Fig. 10. Mean contours of ¯ow variables in the r±z plane for C�ÿ1.0

and Re� 4500, with maximum values given in parentheses; (a)

Vh��2:299�, (b) Vr��0:221�, (c) Vz��0:065�, (d) T, (e) w.

Fig. 11. RMS velocity and temperature ¯uctuations in the r±z plane

for C�ÿ1.0 and Re� 4500, with maximum values given in paren-

theses; (a) Vh; RMS�0:695�, (b) Vr; RMS�0:316�, (c) Vz; RMS�0:217�, (d)

TRMS�0:142�.
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positioning), they have not quanti®ed the experimental un-
certainties of the ¯ow velocity measurements. The high level of
agreement with the experimental data also provides an indi-
cation that the numerical treatment of the shroud clearance
boundary conditions is consistent with the experimentally re-
alized clearance boundary conditions.

Neither the steady two-dimensional ®nite di�erence nu-
merical simulations of Kilic et al. (1994) using a turbulence
model nor the unsteady two-dimensional spectral simulations
of Hill and Ball (1997) could match the experimental data for
C�ÿ0.4 and Re� 105. Thus, it is strongly concluded that the
problems associated with matching the experimental data
when performing an axisymmetric simulation for this counter
rotating disk geometry are due to the axisymmetry assumption
itself. Although, on average, the azimuthal derivatives are ze-
ro, excluding them from the numerical model removes an
important player from the physical problem leading to erro-
neous results.

3.2. Transition to unsteady three-dimensional ¯ow

For all of the cases considered in this study, the initial
transition in the ¯ow from the steady axisymmetric state with
increasing Re is to an unsteady three-dimensional ¯ow. Criti-
cal values of Re were determined by increasing Re in small
increments following the procedure described previously. The
Rec so determined are considered to be accurate to within 3±
5%, and are given in Table 1.

C�ÿ1.0: Fig. 3 shows mean contours (dashed lines indi-
cate negative contour levels) of the three velocity components,
temperature, and secondary ¯ow streamfunction in the r±z

plane for Re� 1730. At this Re, the ¯ow has just undergone a
transition to unsteady three-dimensional ¯ow from a steady
two-dimensional ¯ow at just below Rec� 1700. The mean ¯ow
is characterized by radial out¯ow on both disks that meets to
form an in¯owing free shear layer in the midplane, with ro-
tating ¯uid on either side (Fig. 3(a),(b) and (c)). The mean
secondary ¯ow (in the r±z plane) thus consists of two large
counter-rotating circulations, with the centers of rotation oc-
curring near the outer sidewalls (Fig. 3(e)). At this relatively
low Re, the ¯ow is primarily parallel to the disks (except where
it turns at the sidewalls) and the temperature distribution is
characteristic of di�usion in the axial direction (Fig. 3(d)).

Contours of the RMS velocity and temperature ¯uctuations
in the r±z plane for Re� 1730 are shown in Fig. 4. It is ap-
parent that the unsteadiness originates at the outer sidewalls
where the two radially outward boundary layers meet and
form the free shear layer noted above. The extent of the ¯uc-
tuations is limited to a small region near the outer sidewalls,
beyond approximately r=ro � 0:80. Qualitatively, the distri-
bution of Vh; RMS, Vz; RMS, and TRMS are similar, with two peaks
occurring along the midplane; a strong peak very near the
outer sidewalls �r=ro � 0:97� and a second peak near the cen-
ters of circulation �r=ro � 0:88�. The distribution of Vr; RMS has
only one peak, occurring just outward of the centers of cir-
culation �r=ro � 0:92�.

C�ÿ0.4: Fig. 5 shows mean contours of the ¯ow variables
in the r±z plane for Re� 4400. At this Re, transition to un-
steady three-dimensional ¯ow from a steady two-dimensional
¯ow at Re� 4300 has just occurred. The stronger counter-
clockwise secondary circulation induced by the rotation of the
bottom disk is evident in Fig. 5(e), resulting in the relatively

Fig. 12. (a) Instantaneous secondary ¯ow streamlines in the r±z plane for C�ÿ0.4 and Re� 12000, at eight equally spaced azimuthal locations

(Dh� p/4). (b) Instantaneous temperature contours in the r±z plane for C�ÿ0.4 and Re� 12000, at eight equally spaced azimuthal locations

(Dh� p/4).
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small temperature gradients near the outer portion of the
lower disk and the large temperature gradients near the outer
portion of the slower rotating top disk. Where the counter-
clockwise circulation and the weaker clockwise circulation
meet near the top disk, ¯uid is forced downward into the core
region between the two disks. The center of the counter-
clockwise circulation occurs at approximately r=ro � 0:90. The
resulting free shear layer is inclined at an angle of approxi-
mately 40° to the horizontal midplane.

Contours of the RMS velocity and temperature ¯uctuations
in the r±z plane for Re� 4400 are shown in Fig. 6. The peak
RMS levels occur for each variable along the path of the free
shear layer, which separates from the upper disk near r=ro �
0:80 and ¯ows downward along an inclined path as described
above. The contours for Vh;RMS, Vr;RMS, and TRMS all exhibit a
two-lobed structure, with the larger peak occurring down-
stream of the ®rst peak in the direction of the free shear layer.
The distribution of Vz;RMS has only one peak, near r=ro � 0:75
at the midplane, where the free shear layer has its maximum
curvature as it straightens out to ¯ow radially inward along a
nearly horizontal path. The spatial extent of the RMS ¯uctu-
ations is considerably larger than the C�ÿ1.0 case, occupying
approximately half of the annular volume.

C� 0.0: Fig. 7 shows mean contours of the ¯ow variables
in the r±z plane at eight equally spaced azimuthal locations
for Re� 27000. As above, the ¯ow has just experienced a
transition to unsteady three-dimensional ¯ow from a steady
two-dimensional ¯ow at lower Re. In this case, a single
counter-rotating circulation results from the rotation of the
bottom disk, and is largely con®ned to the two boundary
layers along each disk (Fig. 7(e)). The radial component of
velocity in the core region is negligible (Fig. 7(b)), and the

angular momentum in the core region is horizontally strati®ed
(Fig. 7(a)). Sharp gradients in the temperature ®eld develop
along the upper disk near the outer sidewall where the rela-
tively cold ¯uid originating from the bottom impinges on the
hot upper disk. In similar fashion, sharp temperature gradients
also develop along the bottom disk near the inner sidewall
where the relatively hot ¯uid originating from the top impinges
on the cold bottom disk (Fig. 7(d)).

Contours of the RMS velocity and temperature ¯uctuations
in the r±z plane for Re� 27000 are shown in Fig. 8. The only
signi®cant RMS ¯uctuation levels occur in a small region
along the upper disk adjacent to the outer sidewall, extending
radially inward to about r=ro � 0:8.

3.3. Turbulent ¯ow at 3 Rec

To study the development of turbulence in the counter-
rotating disk system, the ¯ow at values of Re that are
approximately three times the respective critical values are
considered for each C. In all three cases, the ¯ow is chaotic (as
evidenced by broadband power spectra) and may be consid-
ered to be weakly turbulent; the ¯ow appears to become in-
creasingly disordered as C increases in magnitude at ®xed Re.

C�ÿ1.0: In Fig. 9(a) and (b), the secondary ¯ow stream-
lines and temperature contours in the r±z plane are presented
for Re� 4500, at eight equally spaced azimuthal locations at a
®xed instant in time. This is equivalent to viewing a sequence
of instantaneous snapshots separated by small ®xed increments
in time. The chaotic nature of the ¯ow is evident. The ¯ow is
characterized by a large number of pockets of ¯uid circulation,
resulting in signi®cant oscillations in the ¯ow and temperature
®elds in both space and time. The ¯ow is most chaotic in the
region nearest to the outer sidewalls, where the angular ve-
locity of the disks is largest.

Fig. 10 shows mean contours of the ¯ow variables in the r±z
plane. When averaged over long enough periods of time or
large enough ensembles, the ¯ow with C�ÿ1.0 exhibits mid-
plane symmetry. The mean ¯ow ®eld is qualitatively very

Fig. 14. RMS velocity and temperature ¯uctuations in the r±z plane

for C� ÿ0.4 and Re� 12000, with maximum values given in paren-

theses; (a) Vh; RMS�0:210�, (b) Vr; RMS�0:129�, (c) Vz; RMS�0:074�, (d)

TRMS�0:103�.

Fig. 13. Mean contours of ¯ow variables in the r±z plane for C�ÿ0.4

and Re� 12000, with maximum values given in parentheses; (a)

Vh�ÿ0:920; 2:299�, (b) Vr�ÿ0:260; 0:298�, (c) Vz�ÿ0:069; 0:170�, (d) T,

(e) w.
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similar to the lower Re ¯ow presented in Fig. 3, only more
vigorous. Also, the centers of the two counter-rotating circu-
lations have moved radially inward slightly, to about
r=ro � 0:82.

Contours of the RMS velocity and temperature ¯uctuations
in the r±z plane for Re� 4500 are shown in Fig. 11. As with the
lower Re case shown in Fig. 4, the unsteadiness originates at
the outer sidewalls where the free shear layer develops. How-
ever, in contrast to that case, the spatial extent of the ¯uctua-
tions is considerably larger, occupying more than half of the
annular volume. Remnants of the two-lobed structure in Vz;RMS,
and TRMS remain, though this is no longer a dominant feature.

C�ÿ0.4: In Fig. 12(a) and (b), the secondary ¯ow
streamfunction and temperature contours in the r±z plane are
presented for Re� 12000, at eight equally spaced azimuthal
locations at a ®xed instant in time. Again, the chaotic nature of
the ¯ow is evident, and is characterized by numerous pockets
of ¯uid advecting with the ¯ow (Fig. 12(a)). These pockets of
¯uid result in considerable distortion of the temperature ®eld
(Fig. 12(b)). It is also evident upon inspection of Fig. 12(a)
that the location of the stagnation point on the upper disk,
where the radially opposing boundary layer ¯ows meet to form
the downward inclined shear layer, ¯uctuates wildly. The
penetration depth of the shear layer (before it straightens out
to ¯ow radially inward along a horizontal path) also varies
considerably, resulting in ¯uctuations in the temperature gra-
dients along the bottom disk in the region below the free shear
layer �r=ro � 0:65 to r=ro � 0:75; Fig. 12(b)).

Fig. 13 shows mean contours of the ¯ow variables in the r±z
plane. As with the C�ÿ1.0 case, the mean ¯ow at 3 �Rec is
qualitatively similar to that near Rec, only more vigorous. In
Fig. 13, the clockwise circulation along the upper disk at

Fig. 15. (a) Instantaneous secondary ¯ow streamlines in the r±z plane for C� 0 and Re� 70000, at eight equally spaced azimuthal locations (Dh�
p/4). (b) Instantaneous temperature contours in the r±z plane for C� 0 and Re� 70000, at eight equally spaced azimuthal locations (Dh�p/4).

Fig. 16. Mean contours of ¯ow variables in the r±z plane for C� 0 and

Re� 70000, with maximum values given in parentheses; (a) Vh�2:299�,
(b) Vr�ÿ0:238; 0:272�, (c) Vz�ÿ0:039; 0:160�, (d) T, (e) w.
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r=ro < 0:8 is now well de®ned, and the center of the counter-
clockwise circulation has shifted inward slightly. The temper-
ature gradients on the upper disk near the outer sidewall are
also signi®cantly higher (Fig. 13(d)).

In Fig. 14, the RMS velocity and temperature ¯uctuations
for Re� 12000 are presented. Signi®cant ¯uctuation levels
occur throughout the entire annular volume, with peaks oc-
curring along the mean path of the free shear layer, penetrating
all the way down to the bottom disk.

C� 0.0: In Fig. 15(a) and (b), the secondary ¯ow stream-
function and temperature contours in the r±z plane are pre-
sented for Re� 70000 at eight equally spaced azimuthal
locations at a ®xed instant in time. The ¯ow is observed to be
chaotic, with numerous smaller pockets (relative to the pre-
vious two cases) of circulating ¯uid moving radially inward
along the upper disk. The corresponding mean ¯ow ®eld is
shown in Fig. 16. Once again, it is qualitatively similar to the
¯ow shown in Fig. 7 and discussed earlier. However, the RMS
velocity and temperature ¯uctuations, shown in Fig. 17, are
now at signi®cant levels over the entire region along the upper
disk. The boundary layer along the bottom disk is still fairly
steady at this Re.

3.4. Heat transfer results

The local values of Nu (based on the disk spacing, 2h) are
obtained by averaging the pro®les over all azimuthal planes at
a given radius for several snapshots and then averaging over
the snapshots to obtain a single curve for each Re and each
disk. For C�ÿ1.0, the pro®les on each disk may also be
combined to generate a single curve corresponding to both
disks due to the midplane symmetry.

Fig. 18 provides a plot of the radial variation of the average
heat transfer rate for Re� 1730 and 4500 and for C�ÿ1.0.
Near the outer radius, the heat transfer rate is very small due
to the turning of the ¯ow and the resultant decrease in tem-
perature gradients as shown in Fig. 3 and Fig. 10. Moving
radially inward on each disk, the heat transfer rate increases
rapidly to a peak around r=ro � 0:85. It then drops to a rela-
tively constant rate that is dependent on Re, followed by an-

other rise near the inner radius caused here by the turning ¯ow.
The peak in the heat transfer near r=ro � 0:85 is attributed to
the unsteadiness and mixing in the ¯ow at that location, as
seen in the RMS pro®les of Fig. 4 and Fig. 11. Similarly, the
relatively constant heat transfer rate midway between the inner
and outer radius is attributed to the ¯ow being much less
unsteady there. The increase in magnitude and broadening of
the peak near r=ro � 0:85 for Re� 4500 is due to the more
chaotic ¯ow (Fig. 11) and resulting increase in mixing for
higher Re.

The heat transfer rates for C�ÿ0.4 and 0.0 are provided in
Figs. 19 and 20. For these cases the radial pro®les of Nu re¯ect

Fig. 17. RMS velocity and temperature ¯uctuations in the r±z plane

for C� 0 and Re� 70000, with maximum values given in parentheses;

(a) Vh; RMS�0:269�, (b) Vr; RMS�0:066�, (c) Vz; RMS�0:077�, (d) TRMS�0:136�.

Fig. 18. Radial variation of mean Nu for C�ÿ1.0.

Fig. 19. Radial variation of mean Nu for C�ÿ0.4.
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the behavior of the mean ¯ow and are not dominated by
turbulent mixing. In both cases a very strong counter-clock-
wise rotating secondary ¯ow directly strikes the top disk near
the outer radius resulting in the highest heat transfer rates
along the top disk. This ¯ow structure similarly results in a
very low heat transfer near the outer radius of the bottom disk.
At smaller radial locations the heat transfer rate is relatively
constant with radial position for C�ÿ0.4, whereas it exhibits
an asymptotic decrease(increase) for the top(bottom) disk in
the case of C� 0.0.

4. Conclusion

A Fourier±Chebyshev collocation spectral method is used
to simulate the three-dimensional unsteady ¯ow and heat
transfer inside a cylindrical annular enclosure. Turbulent ¯ows
with Reynolds numbers up to 3 �Rec are simulated, for cases
with both disks rotating at the same speed, C�ÿ1.0, with one
disk rotating slower than the other, C�ÿ0.4, and with one
stationary disk, C� 0. Solutions are obtained over a wide
range of Re including the transition from laminar ¯ow, and the
benchmark isothermal results agree well with published ex-
perimental data. Di�erences with previously reported numer-
ical results assuming axisymmetry or using turbulence models
are also discussed. The heat transfer rates between the disks
are also obtained, showing the e�ects of transition to turbu-
lence. As the rotational speed of both disks is increased pro-
portionally (thereby maintaining the same speed ratio but
increasing the system Re), the ¯ow undergoes a transition from
steady to unsteady and chaotic conditions, and the three-di-
mensional nature of the ¯ow is clearly observable. The ¯uc-
tuations throughout the ¯ow are associated with a free shear
layer that arises from the boundary layers over each disk for
the cases C�ÿ1.0 and C�ÿ0.4. For C� 0.0, the ¯uctuations
are limited in extent to the boundary layer over the upper disk.
Finally, the ¯ow is noticeably more chaotic at the same Re as
the magnitude of C increases.

Acknowledgements

The authors are indebted to SEMATECH, Inc. (Austin,
TX) for providing support for this work. Further support
provided by the National Science Foundation under Grant
Number CTS-9258006, the Pittsburgh Supercomputing Center
under Grant Number CTS-960033P, and the Texas Advanced
Computing Center at the University of Texas is gratefully
acknowledged. Any opinions, ®ndings, and conclusions or
recommendations expressed in this publication are those of
the authors and do not necessarily re¯ect the views of the
sponsors.

References

Abrahamson, S.D., Chiang, C., Eaton, J.K., 1991. Flow structure in

head-disk assemblies and implications for design. Advances Infor-

mation Storage Systems 1, 111±132.

Ahmed, I., Ball, K.S., 1997. Spectral simulation of thermocapillary

convection with deformable free surface using boundary-®tted

coordinates. Numer. Heat Transfer B 32, 127±149.

Anaturk, A.R., Szeri, A.Z., 1992. Stability of ¯ow between in®nite

rotating disks. J. Math. Phys. Sci. 26, 569±581.

Batchelor, G.K., 1951. Note on a class of solutions of the Navier±

Stokes equations representing steady rotationally symmetric ¯ow.

Quart. J. Mech. Applied Math. 4, 29±41.

Canuto, C., Hussaini, M.Y., Quateroni, A., Zang, T. A., 1988. Spectral

Methods in Fluid Dynamics, Springer, New York.

Chang, C.J., Humphrey, J.A.C., Grief, R., 1990. Calculation of

turbulent convection between corotating disks in axisymmetric

enclosures. Int. J. Heat Mass Transfer 33, 2701±2720.

Chang, C.J., Schuler, C.A., Humphrey, J.A.C., Grief, R., 1989. Flow

and heat transfer between two corotating disks in an axisymmetric

enclosure. J. Heat Transfer 111, 625±632.

Chin, D.T., Litt, M., 1972. An electrochemical study of ¯ow instability

on a rotating disk. J. Fluid Mech. 54, 613±625.

Ehrenstein, U., Peyret, R.A., 1989. Chebyshev-collocation method for

the Navier-Stokes equations with application to double-di�usive

convection. Int. J. Numer. Methods Fluids 9, 427±452.

Elena, L., Schiestel, R., 1995. Turbulence modeling of con®ned ¯ow in

rotating disk systems. AIAA J. 33, 813±821.

Gan, X., Kilic, M., Owen, J.M., 1994. Superposed ¯ow between two

discs contrarotating at di�erential speeds. Int. J. Heat and Fluid

Flow 15, 438±446.

Haidvogel, D.B., Zang, T.A., 1979. The accurate solution of Poisson's

equation by expansion in Chebyshev polynomials. J. Comp. Phys.

30, 167±180.

Hill, R.W., Ball, K.S., 1997. Chebyshev collocation analysis of

axisymmetric ¯ow and heat transfer between counter-rotating

disks. J. Fluids Eng. 119, 940±947.

Hill, R.W., 1998. Parallel Implementation of a Fourier±Chebyshev

Spectral Method for the Three-dimensional Navier±Stokes Equa-

tions and Application to Transitional Flow in Cylindrical Geom-

etries. Ph.D. Dissertation, The University of Texas at Austin.

Hill, R.W., Ball, K.S., 1999. Parallel implementation of a Fourier±

Chebyshev collocation method for the incompressible Navier±

Stokes equations. Numer. Heat Transfer, in press.

Holodniok, M., Kubicek, M., Hlavacek, V., 1977. Computation of the

¯ow between two rotating coaxial disks. J. Fluid Mech. 81, 689±

699.

Holodniok, M., Kubicek, M., Hlavacek, V., 1981. Computation of the

¯ow between two rotating coaxial disks: Multiplicity of steady-

state solutions. J. Fluid Mech. 108, 227±240.

Fig. 20. Radial variation of mean Nu for C� 0.

220 R.W. Hill, K.S. Ball / Int. J. Heat and Fluid Flow 20 (1999) 208±221



Humphrey, J.A.C., Chang, C.J., Schuler, C.A., 1991. Unobstructed

and obstructed rotating disk ¯ows: A summary review relevant to

information storage systems. Advances Information Storage Sys-

tems 1, 79±110.

Humphrey, J.A.C., Schuler, C.A., Webster, D.R., 1995. Unsteady

laminar ¯ow between a pair of disks corotating in a ®xed

cylindrical enclosure. Phys. Fluids A 7, 1225±1240.

Iacovides, H., Chew, J.W., 1993. The computation of convective heat

transfer in rotating cavities. Int. J. Heat and Fluid Flow 14, 146±

154.

Iglesias, I., Humphrey, J.A.C., 1998. Two- and three-dimensional

laminar ¯ows between disks corotating in a ®xed cylindrical

enclosure. Int. J. Numer. Methods Fluids 26, 581±603.

Kilic, M., Gan, X., Owen, J.M., 1994. Transitional ¯ow between

contra-rotating disks. J. Fluid Mech. 281, 119±135.

Kleiser, L., Schumann, U., 1980. Treatment of incompressibility and

boundary conditions in 3-D numerical spectral simulations of plane

channel ¯ows. In: Proceedings of the Third GAMM Conference on

Numer. Methods Fluid Mech., Vieweg, Braunschweig, pp. 165±

173.

Kobayashi, R., 1994. Review: Laminar to turbulent transition of three-

dimensional boundary layers on rotating bodies. J. Fluids Eng.

116, 200±211.

Ku, H.C., Hirsh, R.S., Taylor, T.D., 1987. A pseudospectral method

for solution of the three-dimensional incompressible Navier±Stokes

equations. J. Comp. Phys. 70, 439±462.

Kuo, D.C., Ball, K.S., 1997. Taylor±Couette ¯ow with buoyancy:

Onset of spiral ¯ow. Phys. Fluids 9, 2872±2884.

Lai, C.Y., Rajagopal, K.R., Szeri, A.Z., 1984. Asymmetric ¯ow

between parallel rotating disks. J. Fluid Mech. 146, 203±225.

LeQu�er�e, P., P�echeux, J., 1989. Numerical simulations of multiple ¯ow

transitions in axisymmetric annulus convection. J. Fluid Mech.

206, 517±544.

Madabhushi, R.K., Balachandar, S., Vanka, S.P., 1993. A diver-

gence-free Chebyshev collocation procedure for incompressible

¯ows with two non-periodic directions. J. Comp. Phys. 105, 199±

206.

Nesreddine, H., Nguyen, C.T., Vo-Ngoc, D., 1995. Laminar ¯ow

between a stationary and a rotating disk with radial through¯ow.

Numer. Heat Transfer A 27, 537±557.

Patera, A.T., Orszag, S.A., 1982. Instability of pipe ¯ow. Non-linear

Problems: Present and Future, North-Holland, Amsterdam, pp.

367±377.

Radel, V.S., Szeri, A.Z., 1997. Symmetry breaking bifurcation in ®nite

disk ¯ow. Phys. Fluids 9, 1650±1656.

Randriamampianina, A., Elena, L., Fountaine, J.P., Schiestel, R.,

1997. Numerical prediction of laminar, transitional and turbulent

¯ows in shrouded rotor±stator systems. Phys. Fluids 9, 1696±1713.

Schuler, C.A., Usry, W., Wever, B., Humphrey, J.A.C., Grief, R.,

1990. On the ¯ow in the unobstructed space between shrouded

corotating disks. Phys. Fluids A 2, 1760±1770.

Stewartson, K., 1953. On the ¯ow between two rotating coaxial disks.

Proc. Cambridge Philos. Soc. 49, 333±341.

Szeri, A.Z., Adams, M.L., 1978. Laminar through¯ow between closely

spaced rotating disks. J. Fluid Mech. 86, 1±14.

Szeri, A.Z., Schneider, S.J., Labbe, F., Kaufman, H.N., 1983a. Flow

between rotating disks. Part 1. Basic ¯ow. J. Fluid Mech. 134, 103±

131.

Szeri, A.Z., Giron, A., Schneider, S.J., Kaufman, H.N., 1983b. Flow

between rotating disks. Part 2. Stability. J. Fluid Mech. 134, 133±

154.

Tuckerman, L.S., 1989. Divergence-free velocity ®elds in non-periodic

geometries. J. Comp. Phys. 80, 403±441.

von Karman, Th., 1921. �Uber laminare und turbulente reibung. Z.

Angew. Math. Mech. 1, 233±252.

Wahal, S., Oztekin, A., Bornside, D.E., Brown, R.A., Seidel, P.K.,

Ackmann, P.W., Geyling, F.T., 1993. Visualization of a gas ¯ow

instability in spin coating systems. Applied Phys. Lett. 62, 2584±

2586.

Yang, H.H., Shizgal, B., 1994. Chebyshev pseudospectral multi-

domain technique for viscous ¯ow calculation. Comput. Methods

Applied Mech. Eng. 118, 47±61.

Zang, T.A., 1991. On the rotation and skew-symmetric forms for

incompressible ¯ow simulations. Applied Numer. Math. 7, 27±40.

R.W. Hill, K.S. Ball / Int. J. Heat and Fluid Flow 20 (1999) 208±221 221


